PRACA PRZEGLĄDOWA
Słuchowe potencjały korowe. Część II. Teoretyczne podstawy generacji oraz charakterystyka wybranych komponentów
 
 
Więcej
Ukryj
1
Instytut Fizjologii i Patologii Słuchu, Światowe Centrum Słuchu, Zakład Audiologii Eksperymentalnej, Warszawa/Kajetany
 
 
Data publikacji: 30-10-2020
 
 
Autor do korespondencji
Rafał Milner   

Światowe Centrum Słuchu, Zakład Audiologii Eksperymentalnej, ul. Mokra 17, Kajetany, 05-830 Nadarzyn, e-mail: r.milner@ifps.org.pl
 
 
Now Audiofonol 2015;4(2):28-42
 
SŁOWA KLUCZOWE
STRESZCZENIE
Słuchowe potencjały korowe (ang. cortical auditory evoked potentials, CAEP) to bioelektryczne odpowiedzi mózgu na bodźce akustyczne generowane w ośrodkach nerwowych znajdujących się na wyższych piętrach analizy informacji słuchowej. Obecnie istnieje wiele teorii na temat dokładnego miejsca ich generacji, funkcjonalnego znaczenia oraz mechanizmów neurofizjologicznych leżących u podłoża powstawania CAEP. Naukowcy próbują także ustalić, które czynniki oraz w jaki sposób wpływają na słuchowe potencjały korowe. Wpływ ten jest badany w doświadczeniach wykorzystujących różnego rodzaju bodźce, schematy doświadczalne oraz techniki rejestracji. Niniejsza II część artykułu zawiera szczegółową charakterystykę wybranych, najczęściej spotykanych w literaturze komponentów słuchowych potencjałów wywołanych. W tej części pracy zamieszczono także opis technik rejestracji poszczególnych odpowiedzi.
FINANSOWANIE
Publikacja powstała w związku z realizacją projektu pn. „Zintegrowany system narzędzi do diagnostyki i telerehabilitacji schorzeń narządów zmysłów (słuchu, wzroku, mowy, równowagi, smaku, powonienia)” INNOSENSE, współfinansowanego przez Narodowe Centrum Badań i Rozwoju w ramach Programu STRATEGMED.
REFERENCJE (84)
1.
Stapells DR. Cortical event-related potentials to auditory stimuli. W: Katz J, red. Handbook of Clinical Audiology. 5th ed., Philadelphia: Lippincott Williams & Wilkins; 2002, s. 378–406.
 
2.
Martin BA, Tremblay KL, Stapells DR. Principles and applications of cortical auditory evoked potentials. W: Burkard R, Eggermont JJ, Don M, red. Auditory Evoked Potentials: basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins; 2007, s. 482–507.
 
3.
McPherson DL, Ballachanda BB. Middle and long latency auditory evoked potentials. W: Roester RJ, Valente M, Hosford-Dunn H, red. Audiology: Diagnosis. 2nd ed., New York: Thieme; 2007, s. 443–78.
 
4.
Velasco M, Velasco F, Velasco AL. Intracranial studies on potential generators of some vertex auditory evoked potentials in man. Stereotact Funct Neurosurg, 1989; 53: 49–73.
 
5.
Knight RT, Scabini D, Woods DL, Clayworth C. The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroencephalogr Clin Neurophysiol, 1988; 70: 499–509.
 
6.
Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 1987; 24: 375–425.
 
7.
Vaughan HG, Ritter W. The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol, 1970; 28: 360–7.
 
8.
Wolpaw JR, Penry JK. A temporal component of the auditory evoked response. Electroencephalogr Clin Neurophysiol, 1975; 39: 609–20.
 
9.
Martin BA, Kurtzberg D, Stapells DR. The effects of decreased audibility produced by high-pass noise masking on N1 and the mismatch negativity to speech sounds/ba/and/da. J Speech Lang Hear Res, 1999; 42: 271–86.
 
10.
Klein SK, Kurtzberg D, Brattson A, Kreuzer JA, Stapells DR, Dunn MA i wsp. Electrophysiologic manifestations of impaired temporal lobe auditory processing in verbal auditory agnosia. Brain Lang, 1995; 51: 383–405.
 
11.
Hyde M. The N1 response and its applications. Audiol Neurotol, 1997; 2: 281–307.
 
12.
Alain C, Woods DL, Covarrubias D. Activation of duration-sensitive auditory cortical fields in humans. Electroencephalogr Clin Neurophysiol Potentials Sect, 1997; 104: 531–9.
 
13.
Onishi S, Davis H. Effects of duration and rise time of tone bursts on evoked V potentials. J Acoust Soc Am, 1968; 44: 582–91.
 
14.
Näätänen R. Attention and brain function. Hilsdale: Psychology Press; 1992.
 
15.
Butler RA. Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am, 1968; 44: 945–50.
 
16.
Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science, 1973; 182: 177–80.
 
17.
Näätänen R. Processing negativity – evoked-potential reflection of selective attention. Psychol Bull, 1982; 92: 605–40.
 
18.
Picton TW, Hillyard SA, Galambos R. Habituation and attention in the auditory system. Audit. Syst., Springer; 1976, 343–89.
 
19.
Crowley KE, Colrain IM. A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol, 2004; 115: 732–44.
 
20.
Oades RD, Dittmann-Balcar A, Zerbin D. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8–22 years of age. Psychophysiology, 1997; 34: 677–93.
 
21.
Ponton CW, Eggermont JJ, Kwong B, Don M. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol, 2000; 111: 220–36.
 
22.
Vaughan HG, Ritter W, Simson R. Topographic analysis of auditory event-related potentials. Prog Brain Res, 1980; 54: 279–85.
 
23.
Scherg M, Vajsar J, Picton T. A source analysis of the late human auditory evoked potentials. J Cogn Neurosci, 1989; 1: 336–55.
 
24.
Rif J, Hari R, Hämäläinen MS, Sams M. Auditory attention affects two different areas in the human supratemporal cortex. Electroencephalogr Clin Neurophysiol, 1991; 79: 464–72.
 
25.
Adler G, Adler J. Influence of stimulus intensity on AEP components in the 80-to 200-millisecond latency range. Int J Audiol, 1989; 28: 316–24.
 
26.
Beagley HA, Knight JJ. Changes in auditory evoked response with intensity. J Laryngol Otol, 1967; 81: 861–73.
 
27.
Wunderlich JL, Cone-Wesson BK. Effects of stimulus frequency and complexity on the mismatch negativity and other components of the cortical auditory-evoked potential. J Acoust Soc Am, 2001; 109: 1526–37.
 
28.
Lutzenberger W, Elbert T, Rockstroh B, Birbaumer N. The effects of self-regulation of slow cortical potentials on performance in a signal detection task. Int J Neurosci, 1979; 9: 175–83.
 
29.
Kenemans JL, Verbaten MN, Roelofs JW, Slangen JL. “Initial-” and “change-orienting reactions”: an analysis based on visual single-trial event-related potentials. Biol Psychol, 1989; 28: 199–226.
 
30.
Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clin Neurophysiol, 2009; 120: 128–35.
 
31.
Amenedo E, Díaz F. Ageing-related changes in the processing of attended and unattended standard stimuli. Neuroreport, 1999; 10: 2383–88.
 
32.
Barrett G, Neshige R, Shibasaki H. Human auditory and somatosensory event-related potentials: effects of response condition and age. Electroencephalogr Clin Neurophysiol, 1987; 66: 409–19.
 
33.
Anderer P, Semlitsch HV, Saletu B. Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr Clin Neurophysiol, 1996; 99: 458–72.
 
34.
Picton TW. Human auditory evoked potentials. San Diego: Plural Pub Incorporated; 2011.
 
35.
Ogilvie RD, Simons IA, Kuderian RH, MacDonald T, Rustenburg J. Behavioral, Event-Related Potential, and EEG/FFT Changes at Sleep Onset. Psychophysiology, 1991; 28: 54–64.
 
36.
Winter O, Kok A, Kenernans JL, Elton M. Auditory event-related potentials to deviant stimuli during drowsiness and stage 2 sleep. Electroencephalogr Clin Neurophysiol Potentials Sect, 1995; 96: 398–412.
 
37.
Sharma A, Kraus N, McGee TJ, Nicol TG. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol Potentials Sect, 1997; 104: 540–45.
 
38.
Van Sweden B, Van Dijk JG, Caekebeke JFV. Auditory information processing in sleep: late cortical potentials in an oddball paradigm. Neuropsychobiology, 1994; 29: 152–6.
 
39.
Picton TW, Hillyard SA, Krausz HI, Galambos R. Human auditory evoked potentials. I: Evaluation of components. Electroencephalogr Clin Neurophysiol, 1974; 36: 179–90.
 
40.
Hari R, Aittoniemi K, Järvinen M-L, Katila T, Varpula T. Auditory evoked transient and sustained magnetic fields of the human brain localization of neural generators. Exp Brain Res, 1980; 40: 237–40.
 
41.
Scherg M, Von Cramon D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol Potentials Sect, 1985; 62: 32–44.
 
42.
Wood CC, Wolpaw JR. Scalp distribution of human auditory evoked potentials. II. Evidence for overlapping sources and involvement of auditory cortex. Electroencephalogr Clin Neurophysiol, 1982; 54: 25–38.
 
43.
Grillon C, Ameli R. Methods of affective clinical psychophysiology. Neurobiol. Ment. Illn. 2nd edition, New York: Oxford University Press; 2004, 127–41.
 
44.
Tremblay K, Kraus N, McGee T, Ponton C, Otis B, others. Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear Hear, 2001; 22: 79–90.
 
45.
Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clin. Neurophysiol., 2009; 120: 128–135.
 
46.
Picton TW, Woods DL, Proulx GB. Human auditory sustained potentials. I. The nature of the response. Electroencephalogr Clin Neurophysiol, 1978; 45: 186–97.
 
47.
Picton TW, Woods DL, Baribeau-Braun J, Healey TM. Evoked potential audiometry. J Otolaryngol, 1977; 6: 90–119.
 
48.
Näätänen R. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst)., 1978; 42(4): 313–29.
 
49.
Picton TW. Auditory evoked potentials. Curr Pract Clin Electroencephalogr, New York: Raven Press; 1990, s: 625–78.
 
50.
Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear, 1995; 16: 38–51.
 
51.
Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M. The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl, 1987; 40: 125.
 
52.
Joutsiniemi S-L, Ilvonen T, Sinkkonen J, Huotilainen M, Tervaniemi M, Lehtokoski A i wsp. The mismatch negativity for duration decrement of auditory stimuli in healthy subjects. Electroencephalogr Clin Neurophysiol Potentials Sect, 1998; 108: 15–59.
 
53.
Näätänen R, Jiang D, Lavikainen J, Reinikainen K, Paavilainen P. Event-related potentials reveal a memory trace for temporal features. Neuroreport, 1993; 5: 310–12.
 
54.
Näätänen R, Alho K. Mismatch negativity – the measure for central sound representation accuracy. Audiol Neurootol, 1997; 2: 341–53.
 
55.
Sandridge SA, Boothroyd A. Using naturally produced speech to elicit the mismatch negativity. J Am Acad Audiol, 1996; 7: 105–12.
 
56.
Sams M, Paavilainen P, Alho K, Näätänen R. Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol Potentials Sect, 1985; 62: 437–48.
 
57.
Kaukoranta E, Sams M, Hari R, Hämäläinen M, Näätänen R. Reactions of human auditory cortex to a change in tone duration. Hear Res, 1989; 41: 15–21.
 
58.
Paavilainen P, Karlsson M-L, Reinikainen K, Näätänen R. Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr Clin Neurophysiol, 1989; 73: 129–41.
 
59.
Kraus N, McGee T, Sharma A, Carrell T, Nicol T. Mismatch negativity event-related potential elicited by speech stimuli. Ear Hear, 1992; 13: 158–64.
 
60.
Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 2008; 45: 152–70.
 
61.
Patel SH, Azzam PN. Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci, 2005; 2: 147.
 
62.
Näätänen R, Gaillard AWK. The orienting reflex and the N2 deflection of the event-related potential (ERP). Adv Psychol, 1983;10: 119–41.
 
63.
Fitzgerald PG, Picton TW. Event-related potentials recorded during the discrimination of improbable stimuli. Biol Psychol, 1983; 17: 241–76.
 
64.
Azizian A, Freitas AL, Parvaz MA, Squires NK. Beware misleading cues: perceptual similarity modulates the N2/P3 complex. Psychophysiology, 2006; 43: 253–60.
 
65.
Buchwald JS. Animal models of cognitive event-related potentials. Event-Relat. Potentials Brain, New York: Oxford University Press; 1990, s. 57–75.
 
66.
Buchwald JS. Comparison of plasticity in sensory and cognitive processing systems. Clin Perinatol, 1990; 17: 57–66.
 
67.
Verleger R. Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci, 1988; 11: 343–56.
 
68.
Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? Behav Brain Sci, 1988; 11.
 
69.
Donchin E. Presidential address, 1980. Surprise!...Surprise? Psychophysiology, 1981; 18: 493–513.
 
70.
Polich J. Updating P300: an integrative theory of P3a and P3b. J Clin Neurophysiol, 2007; 118: 2128–48.
 
71.
Verleger R. On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 1997; 34: 131–56.
 
72.
Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol, 1975; 38: 387–401.
 
73.
Kutas M, Federmeier KD. Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP). Annu Rev Psychol, 2011; 62: 621–47.
 
74.
Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol, 1992; 9: 456–79.
 
75.
Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science, 1965; 150: 1187–88.
 
76.
Verleger R, Jaśkowski P, Wascher E. Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol, 2005; 19: 165–81.
 
77.
Coles MG, Smid HG, Scheffers MK, Otten LJ. Mental chronometry and the study of human information processing.W: Rugg MD, Coles MGH, red. Electrophysiology of mind: Event-related brain potentials and cognition. New York: Oxford University Press; 1995, s. 86–131.
 
78.
McPherson DL. Late potentials of the auditory system. San Diego: Singular Publishing Group; 1996.
 
79.
Michalewski HJ, Rosenberg C, Starr A. Event-related potentials in dementia. New York: Alan R. Liss; 1986, s. 521–8.
 
80.
Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 2001; 3: 557–77.
 
81.
Kutas M, Hillyard SA. Brain potentials during reading reflect word expectancy and semantic association. Nature, 1984: 161–3.
 
82.
Connolly JF, Phillips NA, Stewart SH, Brake WG. Event-related potential sensitivity to acoustic and semantic properties of terminal words in sentences. Brain Lang, 1992; 43: 1–18.
 
83.
Haan H, Streb J, Bien S, Rösler F. Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm). Hum Brain Mapp, 2000; 11: 178–92.
 
84.
Bilger RC, Nuetzel JM, Rabinowitz WM, Rzeczkowski C. Standardization of a test of speech perception in noise. J Speech Lang Hear Res, 1984; 27: 32–48.
 
Scroll to top