PRACA PRZEGLĄDOWA
Plastyczność układu słuchowego – badania z zastosowaniem metod neuroobrazowych
 
Więcej
Ukryj
1
Instytut Fizjologii i Patologii Słuchu, Światowe Centrum Słuchu, Naukowe Centrum Obrazowania Biomedycznego, Kajetany
 
 
Data publikacji: 04-11-2020
 
 
Autor do korespondencji
Katarzyna Cieśla   

Światowe Centrum Słuchu, Naukowe Centrum Obrazowania Biomedycznego, ul. Mokra 17, Kajetany, 05-830 Nadarzyn, e-mail: k.ciesla@ifps.org.pl
 
 
Now Audiofonol 2013;2(3):16-23
 
SŁOWA KLUCZOWE
STRESZCZENIE
W literaturze przedmiotu istnieją liczne doniesienia na temat zmian funkcjonalnych w obrębie układu słuchowego u dorosłych zwierząt i ludzi w okresie deprywacji słuchowej, zachodzących w wyniku rehabilitacji z użyciem specjalistycznych urządzeń wspomagających oraz w konsekwencji treningu. Zjawiska te określa się mianem „plastyczności słuchowej”. Rozwijające się w ostatnich latach techniki badań neuroobrazowych pozwalają w sposób nieinwazyjny mierzyć zakres oraz mechanizmy zmian plastycznych, zarówno w ich aspekcie czasowym, jak i lokalizacyjnym. Wprowadzenie do obszarów zastosowań tych metod stanowi temat niniejszego artykułu przeglądowego.
REFERENCJE (53)
1.
Irvine DRF, Fallon JB, Kamke MR. Plasticity in the adult central auditory system. Acoustics Australia, 2009; 34(1): 13–17.
 
2.
Illing RB. Activity-Dependent Plasticity in the Adult Auditory Brainstem. Audiol Neurootol, 2001; 6(6): 319–45.
 
3.
Neuman AC. Central auditory system plasticity and aural rehabilitation of adults. J Rehabil Res Dev, 2005; 42(4): 169–86.
 
4.
Xiong Y, Zhang Y, Yan J: The neurobiology of sound-specific auditory plasticity: A core neural circuit. Neurosci Biobehav Rev, 2009; 33(8): 1178–84.
 
5.
Dinse HR, Godde B, Reuter G, Cords SM, Hilger T. Auditory cortical plasticity under operation: reorganization of auditory cortex induced by electric cochlear stimulation reveals adaptation to altered sensory input statistics. Speech and Communication, 2003; 41(1): 201–19.
 
6.
Moore BCJ. Wprowadzenie do psychologii słyszenia. Warszawa-Poznań: Wydawnictwo Naukowe PWN; 1999.
 
7.
Hamill T, Price L. The Hearing Sciences. San Diego: Plural Publishing Inc.; 2008.
 
8.
De Boer J, Thornton RD. Neural Correlates of Perceptual Learning in the Auditory Brainstem: Efferent Activity Predicts and Reflects Improvement at a Speech-in-Noise Discrimination Task. J Neurosci, 2008; 28(19); 4929–37.
 
9.
Cahill L. Cortical responses to speech stimuli in hearing impaired infants measured by fMRI and auditory evoked potentials [Doctoral Dissertation], 2010 [Retrieved from: http://etd.ohiolink.edu/view.c... on May 23 2011.].
 
10.
Banai K, Nicol T, Zecker, SG, Kraus N. Brainstem Timing: Implications for Cortical Processing and Literacy. J Neurosci, 2005; 25(43): 9850–57.
 
11.
Martin B, Tremblay K, Stapells D. Principles and applications of cortical auditory evoked potentials. W: Burkard R, Eggermont J, Don M, red. Auditory evoked potentials: Basic principles and clinical application. Lippincott Williams & Wilkins; 2006, 482–507.
 
12.
Green KM. Cortical activity in cochlear implant users – a PET study, Awarded Doctorate of Medicine, University of Manchester, 2007.
 
13.
Carera-Paz FJ, Arbizu J, Prieto E, Manrique M. PET study of auditory plasticity: Helping to address decision making for cochlear implantation of adults. SAUM, 2009; 7(1): 47–54.
 
14.
Teissl C, Kremser C, Hochmair ES, Hochmair-Desoyer IJ. Magnetic resonance imaging and cochlear implants: compatibility and safety aspects. J Magn Reson Imaging, 1999; 9(1): 26–38.
 
15.
Eichhammer P, Kleinjung T, Landgrebe M, Hajak G, Langetuth B. TMS for treatment of chronic tinnitus – neurobiological effects. Prog Brain Res, 2007; 166: 369–75.
 
16.
Zatorre RJ. There’s more to auditory cortex than meets the ear. Hear Res, 2007; 229(1–2): 24–30.
 
17.
Jäncke L, Gaab N, Wüstenberg T, Scheich H, Heinze H-J. Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Res Cogn Brain Res, 2001; 12(3): 479–85.
 
18.
Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev, 2011; 35(5): 1089–109.
 
19.
Clapp WC, Hamm JP, Kirk IJ, Teyler TJ. Translating Long-Term Potentiation from Animals to Humans: A Novel Method for Noninvasive Assessment of Cortical Plasticity. Biol Psychiatry, 2012; 71(6): 496–502.
 
20.
Buonomano DV. Cortical Plasticity: From Synapses to Maps. Annual Reviews of Neuroscience, 1998; 21: 149–186.
 
21.
Liu XP, Basavaraj S, Krishnan R, Yan J. Contributions of the thalamocortical system towards sound-specific auditory plasticity. Neurosci Biobehav Rev, 2011; 35(10): 2155–61.
 
22.
Recanzone GH, Schreiner CE, Merzenichet MM. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci, 1993; 13(1): 87–103.
 
23.
Weinberger NM, Javid R, Lepan B. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc Natl Acad Sci USA, 1993; 90: 2394–98.
 
24.
Menning H, Roberts LE, Pantev C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 2000; 11: 817–22.
 
25.
Pantev C, Ross B, FujiokaT, Trainor LJ, Schulte M, Schulz M. Music and learning-induced cortical plasticity. Ann NY Acad Sci, 2003; 999: 438–50.
 
26.
Musacchia G, Sams M, Skoe E, Kraus N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci USA, 2007; 104(40): 15894–98.
 
27.
Krishnan A, Xu Y, Gandour J, Cariani P. Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res Cog Brain Res, 2005; 25(1): 161–68.
 
28.
Friederici AD, Wartenburger I. Language and brain. Willey Interdisciplinary Reviews – Cognitivr Science, 2010; 1(2): 150–59.
 
29.
Munro KJ. Reorganization of the Adult Auditory System: Perceptual and Physiological Evidence From Monaural Fitting of Hearing Aids. Trends Amplif, 2008; 12: 254–71.
 
30.
Ponton CW. Plasticity in the adult human central auditory system: evidence from late-onset profound unilateral deafness. Hear Res, 2001; 154: 32–44.
 
31.
Moore DR, Devlin JT, Raley J, Tunbridge E, Lanary K, Floyer-Lea A i wsp. Effects of Long Term Unilateral Hearing Loss on the Lateralization of fMRI Measured Activation in Human Auditory Cortex. Plasticity and Signal Representation in the Auditory System, 2005: 335–46.
 
32.
Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J. Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex, 1998; 8(2): 156–63.
 
33.
Hine J, Roger T, Davis A. Does long-term unilateral deafness change auditory evoked potential asymmetries? Clin Neurophysiol, 2008; 119(3): 576–86.
 
34.
Philibert L, Colleti JF, Veuillet V. The auditory acclimatization effect in sensorineural hearing-impaired listeners: Evidence for functional plasticity. Hear Res, 2005; 205(1–2): 131–42.
 
35.
Hamilton A, Munro KJ. Uncomfortable loudness levels in experienced unilateral and bilateral hearing aid users: Evidence of adaptive plasticity following asymmetrical sensory input? Int J Audiol, 2010; 49: 667–71.
 
36.
Munro KJ, Lutman M. The effect of speech presentation level on measurement of auditory acclimatization to amplified speech. J Acoust Soc Am, 2003; 114(1): 484–95.
 
37.
Formby C, Sherlock LP, Gold SL. Adaptive plasticity of loudness induced by chronic attenuation and enhancement of the acoustic background. J Acoust Soc Am, 2003; 114: 55–58.
 
38.
Hwang JH, Wu CW, Chen JH, Liu TC. Changes in activation of the auditory cortex following long-term amplification: an fMRI study. Acta Otolaryngol, 2006; 126(12): 1275–81.
 
39.
Skarzynski H, Wolak T, Pluta A, Lewandowska M, Rusiniak M, Lorens A i wsp. Functional Magnetic Resonance Imaging of Auditory Cortex in Partial DeafnessTreatment. Journal of Hearing Science, 2012; 2(2): OA53–60.
 
40.
Tai-Van H, Micheyl C, Norena A, Veuillet E, Gabriel D, Colleti L. Enhanced frequency discrimination in hearing-impaired individuals: a review of perceptual correlates of central neural plasticity induced by cochlear damage. Hear Res, 2007; 233(1– 2): 14–22.
 
41.
Dietrich V, Nieschalk M, Stoll W, Rajan R, Pantev A. Cortical reorganization in patients with high frequency cochlear hearing loss. Hear Res, 2001;158(1–2): 95–101.
 
42.
Gabriel D, Veuillet E, Vesson JF, Colle L. Rehabilitation plasticity: Influence of hearing aid fitting on frequency discrimination performance near the hearing-loss cut-off. Hear Res, 2006; 213(1–2): 49–57.
 
43.
Kluk K, Moore B. Dead regions in the cochlea and enhancement of frequency discrimination: Effects of audiogram slope, unilateral versus bilateral loss, and hearing-aid use. Hear Res, 2006; 222(1–2): 1–15.
 
44.
Buss E, Hall JW 3rd, Grose JH, Hatch DR. Perceptual consequences of peripheral hearing loss: do edge effects exist for abrupt cochlear lesions? Hear Res, 1998; 125: 98–108.
 
45.
Nishimura H, Doi K, Iwaki T, Hashikawa K, Oku N, Teratani T i wsp. Neural plasticity detected in short- and long-term cochlear implant users using PET. NeuroReport, 2000; 11: 811–15.
 
46.
Naito Y, Iwao H. Verbal self-monitoring in deaf subjects using cochlear implants. Cochlear Implants International, 2000; 1(1): 45–54.
 
47.
Strelnikov K, Rouger J, Eter E, Lagleyre S, Fraysse B, Demonet JF i wsp. Binaural stimulation through cochlear implants. Otol Neurotol, 2011; 32(8); 1210–17.
 
48.
Giraud AI, Truy E, Frackowiak RS. Imaging plasticity in cochlear implant patients. Audiol Neurootol, 2001; 6: 381–93.
 
49.
Cieśla K. The analysis of PET water activation studies with cochlear implants patients and its optimization for modern PET cameras. Awarded Master of Sciences, University of Manchester, 2011.
 
50.
Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS i wsp. Cortical activity at rest predicts cochlear implantation outcome. Cerebral Cortex, 2007; 17: 909–17.
 
51.
Lazard DS, Lee HJ, Giraud A. Bilateral reorganization of posterior temporal cortices in post-lingual deafness and its relation to cochlear implant outcome. Hum Brain Mapp, 2013; 34(5): 1208–19.
 
52.
Tibbetts K, Ead B, Umansky A, Coalson R, Schlaggar BL, Firszt JB i wsp. Interregional brain interactions in children with unilateral hearing loss. Otolaryngol Head Neck Surg, 2011; 144(4): 602–11.
 
53.
Edeline JM. Beyond traditional approaches to understanding the functional role of nueromodulators in sensory cortices. Front Behav Neurosci, 2012; 6(45).
 
Scroll to top