PRACA PRZEGLĄDOWA
Niedosłuch wywoływany przez mutacje w mitochondrialnym DNA
 
Więcej
Ukryj
1
Instytut Fizjologii i Patologii Słuchu, Światowe Centrum Słuchu, Zakład Genetyki, Warszawa/Kajetany
 
 
Data publikacji: 28-10-2020
 
 
Autor do korespondencji
Monika Ołdak   

Światowe Centrum Słuchu, Zakład Genetyki, ul. Mokra 17, Kajetany, 05-830 Nadarzyn, e-mail: m.oldak@ifps.org.pl
 
 
Now Audiofonol 2016;5(3):22-31
 
SŁOWA KLUCZOWE
STRESZCZENIE
Wprowadzenie:
Utrata słuchu jest często spotykanym schorzeniem, występującym przeważnie jako jedyny (izolowany) objaw u pacjenta. W większości przypadków za wystąpienie niedosłuchu izolowanego odpowiadają mutacje w układzie dziedziczenia autosomalnym recesywnym (ok. 80%), rzadziej autosomalnym dominujący (ok. 20%), sprzężonym z chromosomem X lub matczynym, który jest powiązany z mutacjami w genomie mitochondrialnym (ok. 1%).

Cel pracy:
Dotychczas w piśmiennictwie polskim ukazało się niewiele opracowań na temat mutacji w mitochondrialnym DNA (mtDNA) powodujących niedosłuch, w związku z tym w niniejszej pracy przedstawiono aktualny stan wiedzy w tej dziedzinie, skupiając się przede wszystkim na mutacjach mtDNA związanych z występowaniem niedosłuchu izolowanego.

Materiał i metody:
Analiza danych literaturowych dotyczących mutacji w mitochondrialnym DNA odpowiadających za wystąpienie niedosłuchu.

Wyniki i wnioski:
Mutacje w mitochondrialnym DNA nie są wprawdzie częstą przyczyną utraty słuchu, ale w diagnostyce tego schorzenia należy rozważyć badanie w kierunku mutacji mitochondrialnego DNA, zwłaszcza u pacjenta z niedosłuchem obustronnym, symetrycznym, postępującym w czasie, początkowo występującym tylko w obrębie wysokich tonów, a następnie zajmującym również inne częstotliwości, który występuje rodzinnie i cechuje się matczynym dziedziczeniem.

FINANSOWANIE
Publikacja powstała w związku z realizacją projektów: Grant NCN: 2011/03/D/NZ5/05592; Grant NCN: 2012/05/N/NZ5/02629; Zintegrowany system narzędzi do diagnostyki i telerehabilitacji schorzeń narządów zmysłów (słuchu, wzroku, mowy, równowagi, smaku, powonienia)” współfinansowany przez Narodowe Centrum Badań i Rozwoju w ramach Programu STRATEGMED.
 
REFERENCJE (95)
1.
Moeller MP. Early intervention and language development in children who are deaf and hard of hearing. Pediatrics, 2000; 106(3): E43.
 
2.
Nelson HD, Bougatsos C, Nygren P. Universal newborn hearing screening: systematic review to update the 2001 US Preventive Services Task Force Recommendation. Pediatrics, 2008; 122(1): 266–76.
 
3.
Egilmez OK, Kalcioglu MT. Genetics of Nonsyndromic Congenital Hearing Loss. Scientifica (Cairo), 2016; 7576064.
 
4.
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta, 1999; 1410(2): 103–23.
 
5.
Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev, 2007; 59(8): 729–38.
 
6.
Ivanova DG i Yankova TM. The free radical theory of aging in search of a strategy for increasing life span. Folia Med (Plovdiv), 2013; 55(1): 33–41.
 
7.
Cali T, Ottolini D, Brini M. Mitochondrial Ca(2+) as a key regulator of mitochondrial activities. Adv Exp Med Biol, 2012; 942: 53–73.
 
8.
Csordas G i Hajnoczky G. SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta, 2009; 1787(11): 1352–62.
 
9.
Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov A, Bogdanova A i wsp. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis, 2000; 21(16): 3427–40.
 
10.
Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res, 2016; 44(D1): 1251–57.
 
11.
Fischel-Ghodsian N. Mitochondrial deafness. Ear Hear, 2003; 24(4): 303–13.
 
12.
Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM i wsp. Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol, 2009; 68(5): 516–27.
 
13.
Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet, 2005; 6(5): 389–402.
 
14.
Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K i wsp. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet, 2007; 39(3): 386–90.
 
15.
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 2012; 48(2): 158–67.
 
16.
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol, 2013; 87(7): 1157–80.
 
17.
Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC i Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol, 1984; 16(4): 481–88.
 
18.
Iwanicka-Pronicka K, Pollak A, Skórka A, Lechowicz U, Korniszewski L, Westfal P i wsp. Audio profiles in mitochondrial deafness m.1555A>G and m.3243A>G show distinct differences. Med Sci Monit, 2015; 21: 694–700.
 
19.
Iwanicka-Pronicka K, Pollak A, Skórka A, Lechowicz U, Pajdowska M, Furmanek M i wsp. Postlingual hearing loss as a mitochondrial 3243A>G mutation phenotype. PLoS One, 2012; 7(10): e44054.
 
20.
Finsterer J. Inherited mitochondrial disorders. Adv Exp Med Biol, 2012; 942: 187–213.
 
21.
Vanniarajan A, Rajshekher GP, Joshi MB, Reddy AG, Singh L i Thangaraj K. Novel mitochondrial mutation in the ND4 gene associated with Leigh syndrome. Acta Neurol Scand, 2006; 114(5): 350–53.
 
22.
Rötig A, Cormier V, Blanche S, Bonnefont JP, Ledeist F, Romero N i wsp. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest, 1990; 86(5): 1601–68.
 
23.
Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF i wsp. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med, 1989; 320(20): 1293–99.
 
24.
Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, Schon EA i wsp. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology, 1998; 51(6): 1525–33.
 
25.
Maiese K. New Insights for Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev, 2015; 2015: 875961.
 
26.
Thangaraj K, Joshi MB, Reddy AG, Rasalkar AA, Singh L. Sperm mitochondrial mutations as a cause of low sperm motility. J Androl, 2003; 24(3): 388–92.
 
27.
Magner M, Kolarova H, Honzik T, Svandova I, Zeman J. Clinical manifestation of mitochondrial diseases. Dev Period Med, 2015; 19(4): 441–49.
 
28.
Abi-Hachem RN, Zine, Van De Water TR. The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotectives strategies. Recent Pat CNS Drug Discov, 2010; 5(2): 147–63.
 
29.
Nicotera TM, Hu BH, Henderson D. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol, 2003; 4(4): 466–77.
 
30.
Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol, 1999; 4(5): 229–36.
 
31.
Someya S, Prolla TA. Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mech Ageing Dev, 2010; 131(7–8): 480–86.
 
32.
Kokotas H, Petersen MB, Willems PJ. Mitochondrial deafness. Clin Genet, 2007; 71(5): 379–91.
 
33.
Guan MX. Molecular pathogenetic mechanism of maternally inherited deafness. Ann NY Acad Sci, 2004; 1011: 259–71.
 
34.
Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature, 1990; 348(6302): 651–53.
 
35.
van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA i wsp. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet, 1992. 1(5): 368–71.
 
36.
Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW i Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell, 1990; 61(6): 931–37.
 
37.
Zeviani M, Muntoni F, Savarese N, Serra G, Tiranti V, Carrara F i wsp. A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA- (Lys) gene. Eur J Hum Genet, 1993; 1(1): 80–87.
 
38.
Kameoka K, Isotani H, Tanaka K, Azukari K, Fujimura Y, Shiota Y i wsp. Novel mitochondrial DNA mutation in tRNA(Lys) (8296A-->G) associated with diabetes. Biochem Biophys Res Commun, 1998; 245(2): 523–27.
 
39.
Jaksch M, Klopstock T, Kurlemann G, Dorner M, Hofmann S, Kleinle S i wsp. Progressive myoclonus epilepsy and mitochondrial myopathy associated with mutations in the tRNA- (Ser(UCN)) gene. Ann Neurol, 1998; 44(4): 635–40.
 
40.
Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA i wsp. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet, 1992; 1(1): 11–15.
 
41.
Hao H, Bonilla E, Manfredi G, DiMauro S, Moraes CT. Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus. Am J Hum Genet, 1995; 56(5): 1017–25.
 
42.
Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ i wsp. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet, 1993; 4(3): 289–94.
 
43.
Usami S, Abe S, Kasai M, Shinkawa H, Moeller B, Kenyon JB i wsp. Genetic and clinical features of sensorineural hearing loss associated with the 1555 mitochondrial mutation. Laryngoscope, 1997; 107(4): 483–90.
 
44.
Estivill X, Govea N, Barcelo E, Badenas C, Romero E, Moral L i wsp. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet, 1998; 62(1): 27–35.
 
45.
Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D i wsp. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet, 2004; 74(1): 139–52.
 
46.
Bacino C, Prezant TR, Bu X, Fournier P, Fischel-Ghodsian N. Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness. Pharmacogenetics, 1995; 5(3): 165–72.
 
47.
Casano RA, Johnson DF, Bykhovskaya Y, Torricelli F, Bigozzi M, Fischel-Ghodsian N. Inherited susceptibility to aminoglycoside ototoxicity: genetic heterogeneity and clinical implications. Am J Otolaryngol, 1999; 20(3): 151–56.
 
48.
Reid FM, Vernham GA, Jacobs HT. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat, 1994; 3(3): 243–47.
 
49.
Fischel-Ghodsian N, Prezant TR, Fournier P, Stewart IA, Maw M. Mitochondrial mutation associated with nonsyndromic deafness. Am J Otolaryngol, 1995; 16(6): 403–38.
 
50.
Sevior KB, Hatamochi A, Stewart IA, Bykhovskaya Y, Allen- -Powell DR, Fischel-Ghodsian N i wsp. Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet, 1998; 75(2): 179–85.
 
51.
Tiranti V, Chariot P, Carella F, Toscano A, Soliveri P, Girlanda P i wsp. Maternally inherited hearing loss, ataxia and myoclonus associated with a novel point mutation in mitochondrial tRNASer(UCN) gene. Hum Mol Genet, 1995; 4(8): 1421–27.
 
52.
Jaksch M, Hofmann S, Kleinle S, Liechti-Gallati S, Pongratz DE, Müller-Höcker J i wsp. A systematic mutation screen of 10 nuclear and 25 mitochondrial candidate genes in 21 patients with cytochrome c oxidase (COX) deficiency shows tRNA(Ser) (UCN) mutations in a subgroup with syndromal encephalopathy. J Med Genet, 1998; 35(11): 895–900.
 
53.
Schuelke M, Bakker M, Stoltenburg G, Sperner J i von Moers A. Epilepsia partialis continua associated with a homoplasmic mitochondrial tRNA(Ser(UCN)) mutation. Ann Neurol, 1998; 44(4): 700–4.
 
54.
Hutchin TP, Parker MJ, Young ID, Davis AC, Pulleyn LJ, Deeble J i wsp. A novel mutation in the mitochondrial tRNA(Ser(UCN)) gene in a family with non-syndromic sensorineural hearing impairment. J Med Genet, 2000; 37(9): 692–94.
 
55.
Friedman RA, Bykhovskaya Y, Sue CM, DiMauro S, Bradley R, Fallis-Cunningham R i wsp. Maternally inherited nonsyndromic hearing loss. Am J Med Genet, 1999; 84(4): 369–72.
 
56.
Sue CM, Tanji K, Hadjigeorgiou G, Andreu AL, Nishino I, Krishna S i wsp. Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNA(Ser(UCN)) gene. Neurology, 1999; 52(9): 1905–8.
 
57.
Rizzi MD, Hirose K. Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg, 2007; 15(5): 352–57.
 
58.
Rybak LP i Ramkumar V. Ototoxicity. Kidney Int, 2007; 72(8): 931–35.
 
59.
Rydzanicz M, Wróbel M, Pollak A, Gawecki W, Brauze D, Kostrzewska-Poczekaj M i wsp. Mutation analysis of mitochondrial 12S rRNA gene in Polish patients with non-syndromic and aminoglycoside-induced hearing loss. Biochem Biophys Res Commun, 2010; 395(1): 116–21.
 
60.
Skarzyński H, Lorens A, Piotrowska A. A new method of partial deafness treatment. Med Sci Monit, 2003; 9(4): CS20–24.
 
61.
Wang Q i Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol, 2009; 10(2): 205–19.
 
62.
Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D i Bottger EC.Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA, 2008; 105(52): 20888–93.
 
63.
Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG i wsp. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One, 2011; 6(7): e22347.
 
64.
Rahman S, Ecob R, Costello H, Sweeney MG, Duncan AJ, Pearce K i wsp. Hearing in 44–45 year olds with m.1555A>G, a genetic mutation predisposing to aminoglycoside-induced deafness: a population based cohort study. BMJ Open, 2012; 2: e000411.
 
65.
Dehne N, Rauen U, de Groot H i Lautermann J. Involvement of the mitochondrial permeability transition in gentamicin ototoxicity. Hear Res, 2002; 169(1–2): 47–55.
 
66.
Forge A, Li L. Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res, 2000; 139(1–2): 97–115.
 
67.
Cunningham LL, Cheng AG i Rubel EW. Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci, 2002; 22(19): 8532–40.
 
68.
Matsui JI, Gale JE, Warchol ME. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol, 2004; 61(2): 250–66.
 
69.
Bottger EC. Mutant A1555G mitochondrial 12S rRNA and aminoglycoside susceptibility. Antimicrob Agents Chemother, 2010; 54(7): 3073–74; author reply 3074–75.
 
70.
Neefs JM, Van de Peer Y, De Rijk P, Goris A i De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res, 1991; 19(Suppl): 1987–2015.
 
71.
Lu J, Li Z, Zhu Y, Yang A, Li R, Zheng J i wsp. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mitochondrion, 2010; 10(4): 380–90.
 
72.
Yoshida M, Shintani T, Hirao M, Himi T, Yamaguchi A, Kikuchi K i wsp. Aminoglycoside-induced hearing loss in a patient with the 961 mutation in mitochondrial DNA. ORL J Otorhinolaryngol Relat Spec, 2002; 64(3): 219–22.
 
73.
Elstner M, Schmidt C, Zingler VC, Prokisch H, Bettecken T, Elson JL i wsp. Mitochondrial 12S rRNA susceptibility mutations in aminoglycoside-associated and idiopathic bilateral vestibulopathy. Biochem Biophys Res Commun, 2008; 377(2): 379–83.
 
74.
Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci, 2015; 128(5): 833–37.
 
75.
Fischel-Ghodsian N, Kopke RD, Ge X. Mitochondrial dysfunction in hearing loss. Mitochondrion, 2004; 4(5–6): 675–94.
 
76.
Pandya A, Xia XJ, Erdenetungalag R, Amendola M, Landa B, Radnaabazar J i wsp. Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet, 1999; 65(6): 1803–36.
 
77.
Ding Y, Leng J, Fan F, Xia B, Xu P. The role of mitochondrial DNA mutations in hearing loss. Biochem Genet, 2013; 51(7–8): 588–602.
 
78.
Maasz A, Komlosi K, Hadzsiev K, Szabo Z, Willems PJ, Gerlinger I i wsp. Phenotypic variants of the deafness-associated mitochondrial DNA A7445G mutation. Curr Med Chem, 2008; 15(13): 1257–62.
 
79.
Levinger L, Jacobs O i James M. In vitro 3’-end endonucleolytic processing defect in a human mitochondrial tRNA(Ser(UCN)) precursor with the U7445C substitution, which causes non-syndromic deafness. Nucleic Acids Res, 2001; 29(21): 4334–40.
 
80.
Rydzanicz M, Cywińska K, Wróbel M, Pollak A, Gawęcki W, Wojsyk-Banaszak I i wsp. The contribution of the mitochondrial COI/tRNA(Ser(UCN)) gene mutations to non-syndromic and aminoglycoside-induced hearing loss in Polish patients. Mol Genet Metab, 2011. 104(1–2): 153–59.
 
81.
Li R, Greinwald JH Jr, Yang L, Choo DI, Wenstrup RJ, Guan MX. Molecular analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet, 2004; 41(8): 615–20.
 
82.
Li X, Fischel-Ghodsian N, Schwartz F, Yan Q, Friedman RA, Guan MX. Biochemical characterization of the mitochondrial tRNASer(UCN) T7511C mutation associated with nonsyndromic deafness. Nucleic Acids Res, 2004; 32(3): 867–77.
 
83.
Chapiro E, Feldmann D, Denoyelle F, Sternberg D, Jardel C, Eliot MM i wsp. Two large French pedigrees with non syndromic sensorineural deafness and the mitochondrial DNA T7511C mutation: evidence for a modulatory factor. Eur J Hum Genet, 2002; 10(12): 851–56.
 
84.
Li R, Ishikawa K, Deng JH, Heman-Ackah S, Tamagawa Y, Yang L i wsp. Maternally inherited nonsyndromic hearing loss is associated with the T7511C mutation in the mitochondrial tRNASerUCN gene in a Japanese family. Biochem Biophys Res Commun, 2005; 328(1): 32–27.
 
85.
Yamasoba T, Tsukuda K, Suzuki M. Isolated hearing loss associated with T7511C mutation in mitochondrial DNA. Acta Otolaryngol Suppl, 2007; 559: 13–18.
 
86.
Ishikawa K, Tamagawa Y, Takahashi K, Kimura H, Kusakari J, Hara A i wsp. Nonsyndromic hearing loss caused by a mitochondrial T7511C mutation. Laryngoscope, 2002; 112(8 Pt 1): 1494–99.
 
87.
Skarzynski H, Lorens A, Dziendziel B, Skarzynski PH. Expanding pediatric cochlear implant candidacy: A case study of electro-natural stimulation (ENS) in partial deafness treatment. Int J Pediatr Otorhinolaryngol, 2015; 79(11): 1896–900.
 
88.
Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E i wsp. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med, 2015; 7(295): 295ra108.
 
89.
Crispino G, Di Pasquale G, Scimemi P, Rodriguez L, Galindo Ramirez F, De Siati RD i wsp. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS One, 2011; 6(8): e23279.
 
90.
Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H i wsp. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther, 2014; 21(1): 71–80.
 
91.
Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ i wsp. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One, 2012; 7(9): e46355.
 
92.
Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ i Brigande JV. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature, 2008; 455(7212): 537–41.
 
93.
DiMauro S, Mancuso M. Mitochondrial diseases: therapeutic approaches. Biosci Rep, 2007. 27(1–3): 125–37.
 
94.
KC S, Carcamo JM, Golde DW. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J, 2005; 19(12): 1657–67.
 
95.
Procaccio V, Bris C, Chao de la Barca JM, Oca F, Chevrollier A, Amati-Bonneau P i wsp. Perspectives of drug-based neuroprotection targeting mitochondria. Rev Neurol (Paris), 2014; 170(5): 390–400.
 
Scroll to top